Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 14, 2026
-
Since its development, the minimax framework has been one of the cornerstones of theoretical statistics, and has contributed to the popularity of many well-known estimators, such as the regularized M-estimators for high-dimensional problems. In this paper, we will first show through the example of sparse Gaussian sequence model, that the theoretical results under the classical minimax framework are insufficient for explaining empirical observations. In particular, both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. The first contribution of this paper is to demonstrate that this issue can be resolved if the signal-to-noise ratio is taken into account in the construction of the parameter space. We call the resulting minimax framework the signal-to-noise ratio aware minimaxity. The second contribution of this paper is to showcase how one can use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk and discover minimax estimators. The theoretical findings obtained from this refined minimax framework provide new insights and practical guidance for the estimation of sparse signals.more » « less
-
We study the problem of out-of-sample risk estimation in the high dimensional regime where both the sample size n and number of features p are large, and n/p can be less than one. Extensive empirical evidence confirms the accuracy of leave-one-out cross validation (LO) for out-of-sample risk estimation. Yet, a unifying theoretical evaluation of the accuracy of LO in high-dimensional problems has remained an open problem. This paper aims to fill this gap for penalized regression in the generalized linear family. With minor assumptions about the data generating process, and without any sparsity assumptions on the regression coefficients, our theoretical analysis obtains finite sample upper bounds on the expected squared error of LO in estimating the out-of-sample error. Our bounds show that the error goes to zero as n,pāā, even when the dimension p of the feature vectors is comparable with or greater than the sample size n. One technical advantage of the theory is that it can be used to clarify and connect some results from the recent literature on scalable approximate LO.more » « less
-
We study the problem of out-of-sample risk estimation in the high dimensional regime where both the sample size n and number of features p are large, and n/p can be less than one. Extensive empirical evidence confirms the accuracy of leave-one-out cross validation (LO) for out-of-sample risk estimation. Yet, a unifying theoretical evaluation of the accuracy of LO in high-dimensional problems has remained an open problem. This paper aims to fill this gap for penalized regression in the generalized linear family. With minor assumptions about the data generating process, and without any sparsity assumptions on the regression coefficients, our theoretical analysis obtains finite sample upper bounds on the expected squared error of LO in estimating the out-of-sample error. Our bounds show that the error goes to zero as n,pāā, even when the dimension p of the feature vectors is comparable with or greater than the sample size n. One technical advantage of the theory is that it can be used to clarify and connect some results from the recent literature on scalable approximate LO.more » « less
-
Linear minimum mean-square error (L-MMSE) equalization is among the most popular methods for data detection in massive multi-user multiple-input multiple-output (MU-MIMO) wireless systems. While L-MMSE equalization enables near-optimal spectral efficiency, accurate knowledge of the signal and noise powers is necessary. Furthermore, corresponding VLSI designs must solve linear systems of equations, which requires high arithmetic precision, exhibits stringent data dependencies, and results in high circuit complexity. This paper proposes the first VLSI design of the NOnParametric Equalizer (NOPE), which avoids knowledge of the transmit signal and noise powers, provably delivers the performance of L-MMSE equalization for massive MU-MIMO systems, and is resilient to numerous system and hardware impairments due to its parameter-free nature. Moreover, NOPE avoids computation of a matrix inverse and only requires hardware-friendly matrix-vector multiplications. To showcase the practical advantages of NOPE, we propose a parallel VLSI architecture and provide synthesis results in 28nm CMOS. We demonstrate that NOPE performs on par with existing data detectors for massive MU-MIMO that require accurate knowledge of the signal and noise powers.more » « less
An official website of the United States government

Full Text Available